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The basic premise of Landau’s Fermi-liquid theory is adiabatic continuity -
that the particle interaction can be adiabatically turned on or off. Therefore
states of an interacting system (Fermi liquid) can be mapped back to states of
an non-interacting system (Fermi gas) with well-defined momentum. In other
words particle states are completely specified by the adiabatic-equivalent non-
interacting particle momentum.

Note that the momentum is only a good quantum number in the non-
interacting system and it is not very meaningful to talk about momentum in
the interacting system. As such whenever we mention momentum in this note
we always refer to the adiabatic-equivalent non-interacting momentum. We will
also follow the notations in [1]

Calculation of speed of sound

The speed of sound c is given by

c2 =
∂P

∂ρ
=

∂P

∂(mN/Ω)
=

Ω

m

∂P

∂N
(1)

where P is the pressure, ρ is the mass density, m is the mass of a single particle,
N is the total number of particles and Ω is the total volume.

dpF

pF

Figure 1: The Fermi momentum increases by dpF when the chemical potential
increases by dµ.
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The free energy is given by dF = −PdΩ − SdT + µdN . Using the triple
product rule and Maxwell’s relations we have

∂µ

∂N
= − ∂Ω

∂N

∂µ

∂Ω
= − ∂Ω

∂N

∂

∂Ω

( ∂F
∂N

)
=

Ω

N

∂P

∂N
(2)

Thus it all boils down to finding ∂µ
∂N or equivalently ∂N

∂µ . To do so we consider
momentum space of the system and look at how the Fermi surface changes when
the chemical potential increases. The situation is illustrated in figure 1.

We can write down the chemical potential before and after in terms of quasi-
particle energies:

µ+ dµ = εpF+dpF (µ+ dµ), µ = εpF (µ) (3)

where εp(µ) denotes the energy of the quasi-particle with momentum p when
the chemical potential is µ. We can take the difference and obtain

dµ = εpF+dpF (µ+ dµ)− εpF (µ) (4)

= εpF+dpF (µ+ dµ)− εpF (µ+ dµ) + εpF (µ+ dµ)− εpF (µ) (5)

= (∇pεp)|pF dpF +
∑
p′

fpF p′δnp′ (6)

The derivative of energy with respect to momentum at the Fermi level is de-
fined as the Fermi velocity vF = pF /m

∗ where m∗ is the effective mass. The
second term is the additional internal energy creating by the increase in particle
occupancy δnp′ and fpp′ is the Landau parameter. From figure 1 we can see
that the added particles reside within a thin shell above the original Fermi level
with thicken dpF , thus we can write

δnp′ = δ(p′ − pF )dpF (7)

We can express this in terms of the density of states at Fermi surface ν(0) =∑
p δ(εp − µ) by converting the delta function via

δ(εp − µ) =
δ(p− pF )

|∇pεp|
=
δ(p− pF )

vF
(8)

Thus,

dµ = vF dpF +
∑
p′

fpF p′
(
δ(εp − µ)vF dpF

)
(9)

Since the term in the bracket is isotropic and spin-independent, only the isotropic
component of fpF p′ contributes and furthermore it can be replaced by its spin-
average:

dµ = vF dpF +
∑
p′

fS0 δ(εp − µ)vF dpF (10)

= vF dpF + fS0 (
∑
p′

δ(εp − µ))vF dpF (11)

= (1 + FS0 )vF dpF (12)
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where FS0 = fS0 ν(0).
We can now calculate the change in total number of particles by summing

over δn′p:

dN =
∑
p′

δnp′ = vF dpF (
∑
p′

δ(εp − µ)) =
dµ

1 + FS0
ν(0) (13)

dN

dµ
=

ν(0)

1 + FS0
(14)

To calculate ν(0), we need to consider the sum over the delta function:

vF ν(0) =
∑
p

δ(p− pF ) (15)

=
d

dpF

∑
p

Θ(pF − p) (16)

=
d

dpF

2× 4πp3F /3

h3/Ω
(17)

=
Ωm∗pF

πh̄3
(18)

The factor of h3/Ω is due to quantization of the phase space. The extra factor
of 2 is because we are summing over both spins.

Combining everything, we have

c2 =
pF

3mm∗
(1 + FS0 ) (19)

Calculation of magnetic susceptibility

The calculation of magnetic susceptibility follows a similar approach. In mo-
mentum space the Fermi surfaces of the spin-up and spin-down particles will
be shifted in opposite directions but by the same amount dpF . The chemical
potentials of the two spins are equal to each other, and also to the original
chemical potential since µ can at most depend on B2 as B is a vector quantity
and µ is scalar.

We can write down the shift in the chemical potential for each spin:

dµ = εpF+σdpF (B)− εpF (0) (20)

0 = vFσdpF − µBσB +
∑
p′σ′

fpFσp′σ′δ(p′ − pF )σ′dpF (21)

= vFσdpF − µBσB +
∑
p′

(fpFσp′σ − fpFσp′−σ)δ(p′ − pF )σdpF (22)

= vFσdpF − µBσB + 2fA0

(ν(0)

2

)
σdpF (23)

vF dpF =
µBB

1 + FA0
(24)
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where we divide ν(0) by 2 because we are summing over just one spin. σ = ±1
denotes the direction of the spin.

The total spin is given by

s = dn+ − dn− =
ν(0)

2
vF dpF −

ν(0)

2
vF (−dpF ) = ν(0)vF dpF (25)

Combining everything we have

χ =
µBs

ΩB
=
ν(0)

Ω

µ2
B

1 + FA0
(26)

=
m∗pF
π2h̄

µ2
B

1 + FA0
(27)
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